Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.289
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 10404, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710930

RESUMEN

To date, most studies to identify biomarkers associated with response to the anti-interleukin 5 agent, mepolizumab, and to the anti-immunoglobulin E agent, omalizumab have focused on clinically available biomarkers, such as the peripheral blood eosinophil counts (BEC) and total immunoglobulin E (IgE). However, these biomarkers often have low predictive accuracy, with many patients with eosinophilic or allergic asthma failing to demonstrate clinical response to mepolizumab or omalizumab respectively. In this study, we evaluated the association of baseline pre-biologic plasma levels of 26 cytokines and chemokines, including T-helper 1 (Th1)-, Th2-, Th17-related cytokines, and their ratios with subsequent clinical response to mepolizumab or omalizumab. We defined clinical response as a reduction in the baseline annual exacerbation rate by half or more over the one-year period following initiation of the biologic. Baseline levels of plasma IL-13 were differentially elevated in responders versus non-responders to mepolizumab and plasma CXCL10 levels were differentially elevated in responders to omalizumab. The ratio of IL-13/TNF-α had the best sensitivity and specificity in predicting response to mepolizumab and CXCL10/CCL17 to omalizumab, and these performed better as predictive biomarkers of response than BEC and IgE. Cytokines and chemokines associated with airway eosinophilia, allergic inflammation, or Th2 inflammation, such as IL-13 and CXCL10, may be better predictors of clinical response to mepolizumab and omalizumab, than IL-5 or IgE, the targets of mepolizumab and omalizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Asma , Quimiocina CCL17 , Quimiocina CXCL10 , Eosinófilos , Inmunoglobulina E , Interleucina-13 , Omalizumab , Humanos , Asma/tratamiento farmacológico , Asma/sangre , Anticuerpos Monoclonales Humanizados/uso terapéutico , Omalizumab/uso terapéutico , Inmunoglobulina E/sangre , Femenino , Masculino , Quimiocina CCL17/sangre , Adulto , Persona de Mediana Edad , Quimiocina CXCL10/sangre , Interleucina-13/sangre , Factor de Necrosis Tumoral alfa/sangre , Biomarcadores/sangre , Antiasmáticos/uso terapéutico , Recuento de Leucocitos , Resultado del Tratamiento
2.
Front Immunol ; 15: 1362404, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745671

RESUMEN

Introduction: The anti-inflammatory effect of green tea extract (GTE) has been confirmed in asthmatic mice, however, the pharmacological mechanism is not fully elucidated. Methods: To investigate the therapeutic efficacy of GTE in asthma and identify specific pathways, murine model of allergic asthma was established by ovalbumin (OVA) sensitization and the challenge for 4 weeks, with oral treatment using GTE and dexamethasone (DEX). Inflammatory cell counts, cytokines, OVA-specific IgE, airway hyperreactivity, and antioxidant markers in the lung were evaluated. Also, pulmonary histopathological analysis and western blotting were performed. In vitro, we established the model by stimulating the human airway epithelial cell line NCI-H292 using lipopolysaccharide, and treating with GTE and mitogen-activated protein kinases (MAPKs) inhibitors. Results: The GTE100 and GTE400 groups showed a decrease in airway hyperresponsiveness and the number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) compared to the OVA group. GTE treatment also reduced interleukin (IL)-13, IL-5, and IL-4 levels in the BALF, and OVA-specific immunoglobulin E levels in the serum compared to those in the OVA group. GTE treatment decreased OVA-induced mucus secretion and airway inflammation. In addition, GTE suppressed the oxidative stress, and phosphorylation of MAPKs, which generally occurs after exposure to OVA. GTE administration also reduced matrix metalloproteinase-9 activity and protein levels. Conclusion: GTE effectively inhibited asthmatic respiratory inflammation and mucus hyperproduction induced by OVA inhalation. These results suggest that GTE has the potential to be used for the treatment of asthma.


Asunto(s)
Asma , Células Epiteliales , Metaloproteinasa 9 de la Matriz , Estrés Oxidativo , Extractos Vegetales , Asma/tratamiento farmacológico , Asma/inmunología , Asma/metabolismo , Animales , Estrés Oxidativo/efectos de los fármacos , Ratones , Humanos , Extractos Vegetales/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Modelos Animales de Enfermedad , Té/química , Femenino , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos BALB C , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Citocinas/metabolismo , Ovalbúmina/inmunología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
3.
Ter Arkh ; 96(3): 303-308, 2024 Apr 16.
Artículo en Ruso | MEDLINE | ID: mdl-38713048

RESUMEN

Bronchial asthma and chronic polypous rhinosinusitis are diseases associated with a T2-inflammatory immune response. These nosologies can be combined, creating the preconditions for a more severe course of multimorbidity, requiring the use of genetic engineering biological therapy. Dupilumab is a monoclonal antibody that can specifically bind to the alpha subunit of the interleukin-4 receptor and block the action of interleukins 4 and 13, which play a key role in the development of T2 inflammation. Numerous studies have demonstrated the high effectiveness of this medicament. The use of dupilumab in some cases may be accompanied by an increase in eosinophils in the blood. This article presents scientific base and our own experience in treating patients with dupilumab-associated eosinophilia, in addition we describe an algorithm for examining this group of patients for the purpose of timely diagnosis of diseases such as eosinophilic granulomatosis with polyangiitis, eosinophilic pneumonia, etc. It should be noted that in the most cases eosinophilia during targeted therapy with dupilumab is temporary and does not cause clinical manifestations.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Asma , Eosinofilia , Rinitis , Sinusitis , Humanos , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacología , Asma/tratamiento farmacológico , Eosinofilia/tratamiento farmacológico , Sinusitis/tratamiento farmacológico , Rinitis/tratamiento farmacológico , Enfermedad Crónica , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/complicaciones , Rinosinusitis
5.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732251

RESUMEN

Asthma is a chronic respiratory disease with one of the largest numbers of cases in the world; thus, constant investigation and technical development are needed to unravel the underlying biochemical mechanisms. In this study, we aimed to develop a nano-DESI MS method for the in vivo characterization of the cellular metabolome. Using air-liquid interface (ALI) cell layers, we studied the role of Interleukin-13 (IL-13) on differentiated lung epithelial cells acting as a lung tissue model. We demonstrate the feasibility of nano-DESI MS for the in vivo monitoring of basal-apical molecular transport, and the subsequent endogenous metabolic response, for the first time. Conserving the integrity of the ALI lung-cell layer enabled us to perform temporally resolved metabolomic characterization followed by "bottom-up" proteomics on the same population of cells. Metabolic remodeling was observed upon histamine and corticosteroid treatment of the IL-13-exposed lung cell monolayers, in correlation with alterations in the proteomic profile. This proof of principle study demonstrates the utility of in vivo nano-DESI MS for characterizing ALI tissue layers, and the new markers identified in our study provide a good starting point for future, larger-scale studies.


Asunto(s)
Interleucina-13 , Pulmón , Metaboloma , Metabolómica , Proteoma , Proteómica , Interleucina-13/metabolismo , Pulmón/metabolismo , Proteómica/métodos , Metabolómica/métodos , Humanos , Metaboloma/efectos de los fármacos , Proteoma/metabolismo , Espectrometría de Masas/métodos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Asma/metabolismo , Asma/tratamiento farmacológico
6.
Eur J Pharmacol ; 972: 176560, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38604543

RESUMEN

Obese asthma is a unique asthma phenotype that decreases sensitivity to inhaled corticosteroids, and currently lacks efficient therapeutic medication. Celastrol, a powerful bioactive substance obtained naturally from the roots of Tripterygium wilfordii, has been reported to possess the potential effect of weight loss in obese individuals. However, its role in the treatment of obese asthma is not fully elucidated. In the present study, diet-induced obesity (DIO) mice were used with or without ovalbumin (OVA) sensitization, the therapeutic effects of celastrol on airway hyperresponsiveness (AHR) and airway inflammation were examined. We found celastrol significantly decreased methacholine-induced AHR in obese asthma, as well as reducing the infiltration of inflammatory cells and goblet cell hyperplasia in the airways. This effect was likely due to the inhibition of M1-type alveolar macrophages (AMs) polarization and the promotion of M2-type macrophage polarization. In vitro, celastrol yielded equivalent outcomes in Lipopolysaccharide (LPS)-treated RAW264.7 macrophage cells, featuring a reduction in the expression of M1 macrophage makers (iNOS, IL-1ß, TNF-α) and heightened M2 macrophage makers (Arg-1, IL-10). Mechanistically, the PI3K/AKT signaling pathway has been implicated in these processes. In conclusion, we demonstrated that celastrol assisted in mitigating various parameters of obese asthma by regulating the balance of M1/M2 AMs polarization.


Asunto(s)
Asma , Macrófagos Alveolares , Obesidad , Triterpenos Pentacíclicos , Triterpenos , Animales , Asma/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Obesidad/tratamiento farmacológico , Obesidad/complicaciones , Ratones , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico , Células RAW 264.7 , Inflamación/tratamiento farmacológico , Inflamación/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipersensibilidad Respiratoria/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Ovalbúmina , Polaridad Celular/efectos de los fármacos
7.
BMC Pharmacol Toxicol ; 25(1): 30, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650035

RESUMEN

BACKGROUND: Calycosin, a flavonoid compound extracted from Astragalus membranaceus, has shown anti-asthma benefits in house dust mite-induced asthma. Recent studies have suggested that innate-type cells, including group 2 innate lymphoid cells (ILC2s) and macrophages, serve as incentives for type 2 immunity and targets for drug development in asthma. This work focuses on the effects of calycosin on the dysregulated ILC2s and macrophages in allergic asthma. METHODS: In vivo, the asthmatic mouse model was established with ovalbumin (OVA) sensitization and challenge, and calycosin was intraperitoneally administered at doses of 20 and 40 mg/kg. In vivo, mouse primary ILC2s were stimulated with interleukin (IL)-33 and mouse RAW264.7 macrophages were stimulated with IL-4 and IL-13 to establish the cell models. Cells were treated with calycosin at doses of 5 and 10 µM. RESULTS: In vivo, we observed significantly reduced numbers of eosinophils, neutrophils, monocyte macrophages and lymphocytes in the bronchoalveolar lavage fluid (BALF) of OVA-exposed mice with 40 mg/kg calycosin. Histopathological assessment showed that calycosin inhibited the airway inflammation and remodeling caused by OVA. Calycosin markedly decreased the up-regulated IL-4, IL-5, IL-13, IL-33, and suppression tumorigenicity 2 (ST2) induced by OVA in BALF and/or lung tissues of asthmatic mice. Calycosin repressed the augment of arginase 1 (ARG1), IL-10, chitinase-like 3 (YM1) and mannose receptor C-type 1 (MRC1) levels in the lung tissues of asthmatic mice. In vivo, calycosin inhibited the IL-33-induced activation as well as the increase of IL-4, IL-5, IL-13 and ST2 in ILC2s. Calycosin also repressed the increase of ARG1, IL-10, YM1 and MRC1 induced by IL-4 and IL-13 in RAW264.7 macrophages. In addition, we found that these changes were more significant in 40 mg/kg calycosin treatment than 20 mg/kg calycosin. CONCLUSIONS: Collectively, this study showed that calycosin might attenuate OVA-induced airway inflammation and remodeling in asthmatic mice via preventing ILC2 activation and macrophage M2 polarization. Our study might contribute to further study of asthmatic therapy.


Asunto(s)
Asma , Isoflavonas , Linfocitos , Macrófagos , Ratones Endogámicos BALB C , Ovalbúmina , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Células RAW 264.7 , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Inmunidad Innata/efectos de los fármacos , Femenino , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Interleucina-33
8.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650159

RESUMEN

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Asunto(s)
Antiinflamatorios , Antioxidantes , Asma , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Glutatión Peroxidasa , Glutatión , Interleucina-4 , Pulmón , Malondialdehído , Extractos Vegetales , Ratas Wistar , Syzygium , Animales , Antioxidantes/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Syzygium/química , Masculino , Asma/tratamiento farmacológico , Asma/inducido químicamente , Asma/metabolismo , Asma/patología , Líquido del Lavado Bronquioalveolar/química , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión/metabolismo , Interleucina-4/metabolismo , Interleucina-4/sangre , Malondialdehído/metabolismo , Ovalbúmina , Catalasa/metabolismo , Ratas , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Agua/química
9.
Respir Res ; 25(1): 175, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654248

RESUMEN

BACKGROUND: Two isoforms of Phosphoinositide 3-kinase (PI3K), p110γ and p110δ, are predominantly expressed in leukocytes and represent attractive therapeutic targets for the treatment of allergic asthma. The study aim was to assess the impact of administration of an inhaled PI3Kγδ inhibitor (AZD8154) in a rat model of asthma. METHODS: Firstly, we checked that the tool compound, AZD8154, inhibited rat PI3K γ & δ kinases using rat cell-based assays. Subsequently, a time-course study was conducted in a rat model of asthma to assess PI3K activity in the lung and how it is temporally associated with other key transcription pathways and asthma like features of the model. Finally, the impact on lung dosed AZD8154 on target engagement, pathway specificity, airway inflammation and lung function changes was assessed. RESULTS: Data showed that AZD8154 could inhibit rat PI3K γ & δ isoforms and, in a rat model of allergic asthma the PI3K pathway was activated in the lung. Intratracheal administration of AZD8154 caused a dose related suppression PI3K pathway activation (reduction in pAkt) and unlike after budesonide treatment, STAT and NF-κB pathways were not affected by AZD8154. The suppression of the PI3K pathway led to a marked inhibition of airway inflammation and reduction in changes in lung function. CONCLUSION: These data show that a dual PI3Kγδ inhibitor suppress key features of disease in a rat model of asthma to a similar degree as budesonide and indicate that dual PI3Kγδ inhibition may be an effective treatment for people suffering from allergic asthma.


Asunto(s)
Asma , Modelos Animales de Enfermedad , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Ratas , Masculino , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Ratas Sprague-Dawley , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/enzimología , Relación Dosis-Respuesta a Droga , Inhibidores de Proteínas Quinasas/farmacología , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Antiasmáticos/farmacología , Ovalbúmina/toxicidad
10.
Genes (Basel) ; 15(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674355

RESUMEN

Inhaled corticosteroids (ICS) are efficacious in the treatment of asthma, which affects more than 300 million people in the world. While genome-wide association studies have identified genes involved in differential treatment responses to ICS in asthma, few studies have evaluated the effects of combined rare and common variants on ICS response among children with asthma. Among children with asthma treated with ICS with whole exome sequencing (WES) data in the PrecisionLink Biobank (91 White and 20 Black children), we examined the effect and contribution of rare and common variants with hospitalizations or emergency department visits. For 12 regions previously associated with asthma and ICS response (DPP10, FBXL7, NDFIP1, TBXT, GLCCI1, HDAC9, TBXAS1, STAT6, GSDMB/ORMDL3, CRHR1, GNGT2, FCER2), we used the combined sum test for the sequence kernel association test (SKAT) adjusting for age, sex, and BMI and stratified by race. Validation was conducted in the Biorepository and Integrative Genomics (BIG) Initiative (83 White and 134 Black children). Using a Bonferroni threshold for the 12 regions tested (i.e., 0.05/12 = 0.004), GSDMB/ORMDL3 was significantly associated with ICS response for the combined effect of rare and common variants (p-value = 0.003) among White children in the PrecisionLink Biobank and replicated in the BIG Initiative (p-value = 0.02). Using WES data, the combined effect of rare and common variants for GSDMB/ORMDL3 was associated with ICS response among asthmatic children in the PrecisionLink Biobank and replicated in the BIG Initiative. This proof-of-concept study demonstrates the power of biobanks of pediatric real-life populations in asthma genomic investigations.


Asunto(s)
Corticoesteroides , Asma , Gasderminas , Proteínas de la Membrana , Humanos , Asma/tratamiento farmacológico , Asma/genética , Niño , Femenino , Masculino , Corticoesteroides/uso terapéutico , Corticoesteroides/administración & dosificación , Administración por Inhalación , Proteínas de la Membrana/genética , Estudio de Asociación del Genoma Completo , Adolescente , Preescolar , Secuenciación del Exoma , Polimorfismo de Nucleótido Simple
11.
J Ethnopharmacol ; 330: 118105, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631485

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) XYQFT is composed of 10 herbs. According to the NHIRD, XYQFT is one of the top ten most commonly used TCM prescriptions for asthma treatment. AIM OF THE STUDY: The aim of this study was to explore whether XYQFT reduces asthma symptoms in a mouse model of chronic asthma and determine the immunomodulatory mechanism of mast cells. MATERIALS AND METHODS: BALB/c mice were intratracheally (it) stimulated with 40 µL (2.5 µg/µL) of Dermatophagoides pteronyssinus (Der p) once a week for 6 consecutive weeks and orally administered XYQFT at 1 g/kg 30 min before Der p stimulation. Airway hypersensitivity, inflammatory cells in the BALF and total IgE in the blood were assessed in mice. In addition, RBL-2H3 cells (mast cells) were stimulated with DNP-IgE, after which different concentrations of XYQFT were added for 30 min to evaluate the effect of XYQFT on the gene expression and degranulation of DNP-stimulated RBL-2H3 cells. After the compounds in XYQFT were identified using LC‒MS/MS, the PBD method was used to identify the chemical components that inhibited the expression of the GM-CSF and COX-2 genes in mast cells. RESULTS: The airway hypersensitivity assay demonstrated that XYQFT significantly alleviated Der p-induced airway hypersensitivity. Moreover, cell counting and typing of bronchoalveolar lavage fluid revealed a significant reduction in Der p-induced inflammatory cell infiltration with XYQFT treatment. ELISA examination further indicated a significant decrease in Der p-induced total IgE levels in serum following XYQFT administration. In addition, XYQFT inhibited the degranulation and expression of genes (IL-3, IL-4, ALOX-5, IL-13, GM-CSF, COX-2, TNF-α, and MCP-1) in RBL-2H3 cells after DNP stimulation. The compounds timosaponin AIII and genkwanin in XYQFT were found to be key factors in the inhibition of COX-2 and GM-CSF gene expression in mast cells. CONCLUSION: By regulating mast cells, XYQFT inhibited inflammatory cell infiltration, airway hypersensitivity and specific immunity in a mouse model of asthma. In addition, XYQFT synergistically inhibited the expression of the GM-CSF and COX-2 genes in mast cells through timosaponin AIII and genkwanin.


Asunto(s)
Asma , Ciclooxigenasa 2 , Medicamentos Herbarios Chinos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Mastocitos , Ratones Endogámicos BALB C , Animales , Medicamentos Herbarios Chinos/farmacología , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Asma/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Ratones , Ratas , Inmunoglobulina E/sangre , Masculino , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Línea Celular , Antiasmáticos/farmacología , Modelos Animales de Enfermedad
12.
Sci Rep ; 14(1): 9845, 2024 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684750

RESUMEN

Fixed dose combinations (FDCs) incorporating two or three medicines in a single inhaler have been created to enhance patient compliance and hence clinical outcomes. However, the development of dry powder inhalers (DPIs), particularly for FDCs, faces challenges pertinent to formulation uniformity and reproducibility. Therefore, this project aimed to employ nanotechnology to develop a FDC of DPIs for market-leading medicines-fluticasone propionate (FP) and salmeterol xinafoate (SAL)-for asthma management. Nanoaggregates were prepared using a novel biocompatible and biodegradable poly(ester amide) based on the amino acid tyrosine, utilising a one-step interfacial polymerisation process. The produced tyrosine poly (ester amide) drug-loaded nanoparticles were evaluated for content uniformity, PSA, FTIR, TEM, DSC, XRD and aerodynamic performance (in vitro and in vivo). The optimised formulation demonstrated high entrapment efficiency- > 90%. The aerodynamic performance in terms of the emitted dose, fine particle fraction and respirable dose was superior to the carrier-based marketed product. In-vivo studies showed that FP (above the marketed formulation) and SAL reached the lungs of mice in a reproducible manner. These results highlight the superiority of novel FDC FP/SAL nanoparticles prepared via a one-step process, which can be used as a cost-effective and efficient method to alleviate the burden of asthma.


Asunto(s)
Nanopartículas , Tirosina , Animales , Nanopartículas/química , Tirosina/química , Tirosina/análogos & derivados , Administración por Inhalación , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Ratones , Asma/tratamiento farmacológico , Poliésteres/química , Poliésteres/síntesis química , Inhaladores de Polvo Seco , Fluticasona/química , Fluticasona/administración & dosificación , Sistemas de Liberación de Medicamentos , Xinafoato de Salmeterol/química , Xinafoato de Salmeterol/administración & dosificación , Tamaño de la Partícula , Portadores de Fármacos/química
13.
Respir Med ; 226: 107610, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561078

RESUMEN

INTRODUCTION/BACKGROUND: Mild asthma treatment recommendations include intermittent inhaled corticosteroid (ICS)/formoterol dosing or regular ICS dosing with short-acting ß2-agonist reliever. Due to the heterogeneity of asthma, identification of traits associated with improved outcomes to specific treatments would be clinically beneficial. AIMS/OBJECTIVES: To assess the impact of patient traits on treatment outcomes of regular ICS dosing compared with intermittent ICS/formoterol dosing, a systematic literature review (SLR) and network meta-analysis (NMA) was conducted. Searches identified randomised controlled trials (RCTs) of patients with asthma aged ≥12 years, containing ≥1 regular ICS dosing or intermittent ICS/formoterol dosing treatment arm, reporting traits and outcomes of interest. RESULTS: The SLR identified 11 RCTs of mild asthma, of 14,516 patients. A total of 11 traits and 11 outcomes of interest were identified. Of these, a feasibility assessment indicated possible assessment of three traits (age, baseline lung function, smoking history) and two outcomes (exacerbation rate, change in lung function). The NMA found no significant association of any trait with any outcome with regular ICS dosing relative to intermittent ICS/formoterol dosing. Inconsistent reporting of traits and outcomes between RCTs limited analysis. CONCLUSIONS: This is the first systematic analysis of associations between patient traits and differential treatment outcomes in mild asthma. Although the traits analysed were not found to significantly interact with relative treatment response, inconsistent reporting from the RCTs prevented assessment of some of the most clinically relevant traits and outcomes, such as adherence. More consistent reporting of respiratory RCTs would provide more comparable data and aid future analyses.


Asunto(s)
Corticoesteroides , Agonistas de Receptores Adrenérgicos beta 2 , Asma , Fumarato de Formoterol , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Asma/tratamiento farmacológico , Fumarato de Formoterol/administración & dosificación , Administración por Inhalación , Corticoesteroides/administración & dosificación , Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Agonistas de Receptores Adrenérgicos beta 2/uso terapéutico , Resultado del Tratamiento , Antiasmáticos/administración & dosificación , Quimioterapia Combinada , Adulto , Masculino , Femenino , Persona de Mediana Edad , Factores de Edad , Fumar , Adolescente
14.
BioDrugs ; 38(3): 425-448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38489062

RESUMEN

BACKGROUND: The management of uncontrolled severe asthma has greatly improved since the advent of novel biologic therapies. Up to August 2022, five biologics have been approved for the type 2 asthma phenotype: anti-IgE (omalizumab), anti-IL5 (mepolizumab, reslizumab, benralizumab), and anti-IL4 (dupilumab) monoclonal antibodies. These drugs are usually well tolerated, although long-term safety information is limited, and some adverse events have not yet been fully characterized. Spontaneous reporting systems represent the cornerstone for the detection of potential signals and evaluation of the real-world safety of all marketed drugs. OBJECTIVE: The aim of this study was to provide an overview of safety data of biologics for severe asthma using VigiBase, the World Health Organization global pharmacovigilance database. METHODS: We selected all de-duplicated individual case safety reports (ICSRs) attributed to five approved biologics for severe asthma in VigiBase, up to 31st August 2022 (omalizumab, mepolizumab, reslizumab, benralizumab and dupilumab). Descriptive frequency analyses of ICSRs were carried out both as a whole class and as individual products. Reporting odds ratios (ROR) with 95% confidence intervals (CIs) were used as the measure of disproportionality for suspected adverse drug reactions (ADRs) associated with the study drugs compared with either all other suspected drugs (Reference Group 1, RG1) or inhaled corticosteroids plus long-acting ß-agonists (ICSs/LABAs) (Reference Group 2, RG2) or with oral corticosteroids (OCSs) (Reference Group 3, RG3). RESULTS: Overall, 31,724,381 ICSRs were identified in VigiBase and 167,282 (0.5%) were related to study drugs; the remaining reports were considered as RG1. Stratifying all biologic-related ICSRs by therapeutic indication, around 29.4% (n = 48,440) concerned asthma use; omalizumab was mainly indicated as the suspected drug (n = 20,501), followed by dupilumab, mepolizumab, benralizumab and reslizumab. Most asthma ICSRs concerned adults (57%) and women (64.1%). Asthma biologics showed a higher frequency of serious suspected ADR reporting than RG1 (41.3% vs 32.3%). The most reported suspected ADRs included asthma, dyspnea, product use issue, drug ineffective, cough, headache, fatigue and wheezing. Asthma biologics were disproportionally associated with several unknown or less documented adverse events, such as malignancies, pulmonary embolism and deep vein thrombosis with omalizumab; alopecia and lichen planus with dupilumab; alopecia and herpes infections with mepolizumab; alopecia, herpes zoster and eosinophilic granulomatosis with polyangiitis related to benralizumab; and alopecia with reslizumab. CONCLUSIONS: The most frequently reported suspected ADRs of asthma biologics in VigiBase confirmed the presence of well-known adverse effects such as general disorders, injection-site reactions, nasopharyngitis, headache and hypersensitivity, while some others (e.g. asthma reactivation or therapeutic failure) could be ascribed to the indication of use. Moreover, the analysis of signals of disproportionate reporting suggests the presence of malignancies, effects on the cardiovascular system, alopecia and autoimmune conditions, requiring further assessment and investigation.


Asunto(s)
Antiasmáticos , Asma , Farmacovigilancia , Organización Mundial de la Salud , Humanos , Asma/tratamiento farmacológico , Antiasmáticos/efectos adversos , Antiasmáticos/uso terapéutico , Femenino , Masculino , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticuerpos Monoclonales Humanizados/uso terapéutico , Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Bases de Datos Factuales , Adulto , Terapia Biológica/efectos adversos , Terapia Biológica/métodos , Persona de Mediana Edad , Anciano , Omalizumab/uso terapéutico , Omalizumab/efectos adversos , Productos Biológicos/efectos adversos , Productos Biológicos/uso terapéutico
15.
Laryngorhinootologie ; 103(3): 219-230, 2024 03.
Artículo en Alemán | MEDLINE | ID: mdl-38437838

RESUMEN

The lifetime prevalence of 8.6% of asthma in Germany reflects the high medical and socioeconomic impact of the disease. Asthma treatment goals have changed during the last decades: from symptom control to symptom prevention, with highly effective, disease-modifying anti-asthmatic drugs (DMAADs) aiming at asthma remission. In order to achieve this goal, phenotyping of patients (including an evaluation of allergies and type 2 biomarkers) is crucial for personalized treatment. The identification and effective treatment of concomitant diseases, such as allergic rhinitis or chronic rhinosinusitis with nasal polyps (CRSwNP), plays a major role for successful treatment. This underlines the importance of interdisciplinary collaboration of otolaryngologists and respiratory physicians in the management of patients with asthma. This CME article informs the reader about current guidelines on the diagnosis and treatment of asthma, focusing on clinically relevant recommendations for ENT physicians.


Asunto(s)
Asma , Rinitis Alérgica , Humanos , Asma/diagnóstico , Asma/tratamiento farmacológico , Asma/epidemiología , Alemania , Otorrinolaringólogos
16.
Food Funct ; 15(8): 4292-4309, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38526853

RESUMEN

Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airway inflammation and mucus hypersecretion. α-Terpineol is a monocyclic terpene found in many natural plants and foods. It has been reported to possess a wide range of pharmacological activities including anti-inflammatory and expectorant effects. However, the role of α-terpineol in asthma and its potential protective mechanism have not been well elucidated. This study is designed to investigate the pharmacological effect and mechanism of α-terpineol on asthmatic mice using the metabolomics platform. A murine model of asthma was established using ovalbumin (OVA) sensitization and then challenged for one week. The leukocyte count and inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory  infiltrate and mucus secretion were evaluated. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based metabolomics study was performed on lung tissues and serum to explore endogenous small molecule metabolites affected by α-terpineol in asthmatic mice. After α-terpineol treatment, leukocyte count, inflammatory cytokines in the BALF, and peribronchial inflammation infiltration were significantly downregulated. Goblet cell hyperplasia and mucus secretion were attenuated, with the level of Muc5ac in BALF decreased. These results proved the protective effect of α-terpineol against airway inflammation, mucus hypersecretion and Th1/Th2 immune imbalance. To further investigate the underlying mechanisms of α-terpineol in asthma treatment, UPLC-MS/MS-based metabolomics analysis was performed. 26 and 15 identified significant differential metabolites were found in the lung tissues and serum of the control, model and α-terpineol groups, respectively. Based on the above differential metabolites, enrichment analysis showed that arachidonic acid (AA) metabolism was reprogrammed in both mouse lung tissues and serum. 5-Lipoxygenase (5-LOX) and cysteinyl leukotrienes (CysLTs) are the key enzyme and the end product of AA metabolism, respectively. In-depth studies have shown that pretreatment with α-terpineol can alleviate asthma by decreasing the AA level, downregulating the expression of 5-LOX and reducing the accumulation of CysLTs in mouse lung tissues. In summary, this study demonstrates that α-terpineol is a potential agent that can prevent asthma via regulating disordered AA metabolism.


Asunto(s)
Ácido Araquidónico , Asma , Líquido del Lavado Bronquioalveolar , Monoterpenos Ciclohexánicos , Pulmón , Metabolómica , Ratones Endogámicos BALB C , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Ratones , Monoterpenos Ciclohexánicos/farmacología , Ácido Araquidónico/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Femenino , Modelos Animales de Enfermedad , Citocinas/metabolismo , Ovalbúmina , Espectrometría de Masas en Tándem , Mucina 5AC/metabolismo , Cromatografía Líquida de Alta Presión
17.
BMC Pulm Med ; 24(1): 137, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500104

RESUMEN

BACKGROUND: Yanghe Pingchuan decoction (YPD) has been used for asthma treatment for many years in China. We sought to understand the mechanism of YPD, and find more potential targets for YPD-based treatment of asthma. METHODS: An ovalbumin-induced asthma model in rats was created. Staining (hematoxylin and eosin, Masson) was used to evaluate the treatment effect of YPD. RNA-sequencing was carried out to analyze global gene expression, and differentially expressed genes (DEGs) were identified. Analysis of the functional enrichment of genes was done using the Gene Ontology database (GO). Analysis of signaling-pathway enrichment of genes was done using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Real-time reverse transcription-quantitative polymerase chain reaction was undertaken to measure expression of DEGs. RESULTS: Pathology showed that YPD had an improvement effect on rats with asthma. RNA-sequencing showed that YPD led to upregulated and downregulated expression of many genes. The YPD-based control of asthma pathogenesis may be related to calcium ion (Ca2+) binding, inorganic cation transmembrane transporter activity, microtubule motor activity, and control of canonical signaling (e.g., peroxisome proliferator-activated receptor, calcium, cyclic adenosine monophosphate). Enrichment analyses suggested that asthma pathogenesis may be related to Ca2 + binding and contraction of vascular smooth muscle. A validation experiment showed that YPD could reduce the Ca2 + concentration by inhibiting the Angiopoietin-II (Ang-II)/Phospholipase (PLA)/calmodulin (CaM0 signaling axis. CONCLUSION: Control of asthma pathogenesis by YPD may be related to inhibition of the Ang-II/PLA/CaM signaling axis, reduction of the Ca2+ concentration, and relaxation of airway smooth muscle (ASM).


Asunto(s)
Asma , Calcio , Medicamentos Herbarios Chinos , Ratas , Animales , Calcio/efectos adversos , Asma/tratamiento farmacológico , Asma/genética , Asma/metabolismo , ARN/efectos adversos , Expresión Génica , Poliésteres/efectos adversos
18.
Biochem Biophys Res Commun ; 709: 149831, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38552552

RESUMEN

Asthma and chronic obstructive pulmonary disease (COPD) are respiratory diseases associated with airway inflammation, which is the main pathogenesis. Although their causes and characteristics differ, in some cases, asthma and COPD may coexist in the same patient in a condition called asthma-COPD overlap (ACO). The prognosis of ACO is more unfavourable than those of asthma or COPD alone, without any treatment strategies demonstrating efficacy. Owing to its intricate spectrum of features, the detailed pathogenesis of how ACO exacerbates respiratory features remains unclear. In this study, we exposed papain-induced asthma model mice to tobacco smoke to establish an ACO mouse model, in which features of airway inflammation observed in both asthma and COPD were incorporated. This model exhibited distinctive mixed and corticosteroid-resistant airway inflammation and emphysematous changes that are characteristic of ACO. The novel mouse model established here is expected to significantly contribute to elucidating the mechanisms of the broad pathologies of ACO and identifying potential therapeutic targets.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Contaminación por Humo de Tabaco , Humanos , Animales , Ratones , Papaína , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Asma/tratamiento farmacológico , Inflamación/complicaciones
19.
Med Phys ; 51(4): 2413-2423, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431967

RESUMEN

BACKGROUND: Individuals with asthma can vary widely in clinical presentation, severity, and pathobiology. Hyperpolarized xenon-129 (Xe129) MRI is a novel imaging method to provide 3-D mapping of both ventilation and gas exchange in the human lung. PURPOSE: To evaluate the functional changes in adults with asthma as compared to healthy controls using Xe129 MRI. METHODS: All subjects (20 controls and 20 asthmatics) underwent lung function measurements and Xe129 MRI on the same day. Outcome measures included the pulmonary ventilation defect and transfer of inspired Xe129 into two soluble compartments: tissue and blood. Ten asthmatics underwent Xe129 MRI before and after bronchodilator to test whether gas transfer measures change with bronchodilator effects. RESULTS: Initial analysis of the results revealed striking differences in gas transfer measures based on age, hence we compared outcomes in younger (n = 24, ≤ 35 years) versus older (n = 16, > 45 years) asthmatics and controls. The younger asthmatics exhibited significantly lower Xe129 gas uptake by lung tissue (Asthmatic: 0.98% ± 0.24%, Control: 1.17% ± 0.12%, P = 0.035), and higher Xe129 gas transfer from tissue to the blood (Asthmatic: 0.40 ± 0.10, Control: 0.31% ± 0.03%, P = 0.035) than the younger controls. No significant difference in Xe129 gas transfer was observed in the older group between asthmatics and controls (P > 0.05). No significant change in Xe129 transfer was observed before and after bronchodilator treatment. CONCLUSIONS: By using Xe129 MRI, we discovered heterogeneous alterations of gas transfer that have associations with age. This finding suggests a heretofore unrecognized physiological derangement in the gas/tissue/blood interface in young adults with asthma that deserves further study.


Asunto(s)
Asma , Broncodilatadores , Adulto Joven , Humanos , Adulto , Broncodilatadores/uso terapéutico , Barrera Alveolocapilar , Pulmón/diagnóstico por imagen , Asma/diagnóstico por imagen , Asma/tratamiento farmacológico , Isótopos de Xenón , Imagen por Resonancia Magnética/métodos , Xenón/uso terapéutico
20.
Medicina (Kaunas) ; 60(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38541113

RESUMEN

Background and Objectives: Severe adult-onset eosinophilic asthma and COPD with eosinophilic inflammation are two entities with a similar clinical course and are sometimes difficult to differentiate in clinical practice, especially in patients with a history of smoking. Anti-IL-5 or -IL-5R biological therapy has been shown to be highly effective in severe eosinophilic asthma but has not demonstrated significant benefit in patients with COPD with the eosinophilic phenotype. Our aim was to illustrate this issue in the form of a case report. Materials and Methods: We present the case of a 67-year-old patient who is a former smoker with late-onset severe uncontrolled asthma (ACT score < 15) who experienced frequent exacerbations requiring treatment with systemic corticosteroids. The patient's lung function gradually worsened to a nadir FEV1 = 18%, despite a high dose of ICS in combination with a LABA and intermittent courses of OCS, with negative allergic skin-tests, but with high blood eosinophils level. Biological treatment with an anti-IL5R monoclonal antibody (benralizumab) was initiated, despite the difficulty in the differential diagnosis between asthma and COPD with eosinophilic inflammation. Results: The patient's evolution was favorable; clinical remission was effectively achieved with significant improvement in lung function (FEV1 > 100%), but with persistence of residual mild fixed airway obstructive dysfunction (FEV1/FVC < 0.7). The therapeutic response has been maintained to date. Conclusions: Benralizumab was shown to be very effective in a patient with late-onset severe eosinophilic asthma presenting features of chronic obstructive disease-habitual exposure to tobacco and inhaled noxious substances, and persistent airflow limitation on spirometry.


Asunto(s)
Antiasmáticos , Asma , Eosinofilia , Enfermedad Pulmonar Obstructiva Crónica , Anciano , Humanos , Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Asma/complicaciones , Asma/tratamiento farmacológico , Enfermedad Crónica , Eosinofilia/complicaciones , Eosinofilia/tratamiento farmacológico , Eosinófilos , Inflamación/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA